Plasma Catalysis Book by Xin Tu at Bookstore - Bookswagon
Home > Science & Mathematics > Physics > Particle & high-energy physics > Plasma Catalysis
Plasma Catalysis

Plasma Catalysis


     0     
5
4
3
2
1



International Edition


About the Book

This book provides a comprehensive overview of the field of plasma catalysis, regarded as a promising alternative to thermal processes for energy and environmental applications. It bridges the gap between the plasma and catalysis research communities, covering both the fundamentals of plasma catalysis and its application in environmental and energy research.

The first section of the book offers a broad introduction to plasma catalysis, covering plasma-catalyst systems, interactions, and modeling. The core of the book then focuses on different applications, describing a wide range of plasma-catalytic processes in catalyst synthesis, environmental clean-up, greenhouse gas conversion and synthesis of materials for energy applications. Chapters cover topics ranging from removal of NOx and VOCs to conversion of methane, carbon dioxide and the reforming of ethanol and methanol.

Written by a group of world-leading researchers active in the field, the book forms a valuable resource for scientists, engineers and students with different research backgrounds including plasma physics, plasma chemistry, catalysis, energy, environmental engineering, electrical engineering and material engineering.


About the Author: Dr. Xin Tu received PhD in Physics at CORIA CNRS UMR 6614 (Université de Rouen), France and PhD in Thermal Engineering at Zhejiang University, China in 2007. He was a Postdoctoral Researcher at Katholieke Universiteit Leuven (Belgium) and the University of Manchester (UK). Dr. Tu was appointed as a Lecturer with the Department of Electrical Engineering and Electronics at the University of Liverpool in 2012, and was promoted to Senior Lecturer in 2015 and Reader in 2017. Dr. Tu has been working for many years on interdisciplinary research at the interface of plasma science and chemical engineering directed towards environmental clean-up, synthesis of fuels and chemicals, nuclear decommissioning, energy conversion and storage. Significant efforts have been devoted to plasma-catalysis where the combination of non-thermal plasma and catalysis has been used as a promising process for the oxidation of gas pollutants (e.g. VOCs and PAHs) and for the conversion of carbon sources (e.g. CH4, CO2, tars and hydrocarbon oils) into value-added synthetic fuels and platform chemicals such as hydrogen, hydrocarbons, carbon nanomaterials and liquid fuels and chemicals. Dr. Tu is the author of 1 book chapter and over 80 peer-reviewed papers. Dr. Tu has received a prestigious B. Eliasson Award from the International Symposium on Plasmas for Catalysts and Energy Materials (ISPCEM) to recognise his significant contributions to plasma-catalysis with emphasis on the fundamental understanding of the synergy of plasma-catalysis in 2014. He has been awarded a Newton Advanced Fellowship by the Royal Society, which is a prestigious award to recognise his international leadership in his area of research.
Christopher Whitehead received a BSc in Chemical Physics at the University of Edinburgh in 1969 and a PhD at the University of Cambridge in 1972. He then held fellowships at Cambridge and Columbia Universities. He was appointed to the Chemistry Department at Manchester University in 1977 where he is now an Emeritus Professor. His research was initially in the field of crossed molecular beam scattering studying the dynamics of elementary chemical reactions using mass spectrometry and laser-induced fluorescence. Subsequently, there was a focus on the dynamics and kinetics of reactions and photodissociation processes involving atoms and radicals in the gas-phase, in clusters and on surfaces with particular emphasis on the role played by electronically-excited species. This led to a study of the chemistry taking part in gas discharges, chemical lasers and most recently plasma and the use of plasmas for the treatment of waste gas streams such as diesel exhausts and solvents, for the purification of indoor air and the destruction of odours, latterly using the hybrid technique of plasma-activated catalysis as a method of improving efficiency and selectivity. The use of plasma technology for the transformation of gases such as methane and carbon dioxide into chemical feedstocks and higher value fuels is of current interest. He is the author of over 140 peer-reviewed journal papers and a few book chapters. He is a member of editorial board for Plasma Chemistry and Plasma Processing.

Dr. Nozaki received B.E. and M.E. degrees from Toyohashi University of Technology, Japan, both in Energy Engineering, in 1993 and 1995. He started his carrier at Ishikawajima-Harima Heavy Industries. Co. Ltd. (currently IHI) ('95-'96), where he engaged in the pulverized coal combustion and the environmental protection technology development. He became a faculty of Gifu University in Mechanical Engineering ('96-'99) and an Assistant Professor of Tokyo Institute of Technology in the Department of Mechanical Engineering ('99). He directed his research to the atmospheric pressure plasma chemistry and received Ph.D. from Tokyo Tech in 2003. After his postdoctoral work at the University of Minnesota ('03-'04), he received full professorship from Tokyo Institute of Technology in 2012. He pioneered innovative plasma processing technologies based on atmospheric pressure plasmas and is exploring the frontier of Plasma Catalysis, Natural gas conversion, Power-to-Gas, and silicon nanoparticle synthesis and photovoltaic application. He is the author of more than 150 publications including several book chapters. He is currently a Board of Director of International Plasma Chemistry Society, Editorial Board of Plasma Chemistry and Plasma Processing (Springer), International Advisory Board of Plasma Processes and Polymers (Wiley), and the Editor of Springer Series in Plasma Science and Technology (Springer).


Best Sellers



Product Details
  • ISBN-13: 9783030051884
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 348
  • Series Title: Springer Atomic, Optical, and Plasma Physics
  • Sub Title: Fundamentals and Applications
  • Width: 156 mm
  • ISBN-10: 3030051889
  • Publisher Date: 29 Nov 2019
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 21 mm
  • Weight: 730 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Plasma Catalysis
Springer -
Plasma Catalysis
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Plasma Catalysis

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!