Plastic Deformation of Ceramics
Home > Mathematics and Science Textbooks > Physics > Materials / States of matter > Condensed matter physics > Plastic Deformation of Ceramics
Plastic Deformation of Ceramics

Plastic Deformation of Ceramics

|
     0     
5
4
3
2
1




International Edition


About the Book

This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.

Table of Contents:
Crack-Tip Plasticity and Quasi-Brittle Fracture of Single Crystals.- The Brittle to Ductile Transition in MgAl2O4 Spinel.- Plasticity of Zirconia.- Plastic Deformation of Zirconia Single Crystals by in situ Straining Experiments in an HVEM at 1150°C.- Dislocation Decomposition, Dissociation, and Deformation in MoSi2 and ?-Al2O3 Single Crystals.- Basal Slip and Twinning in Sapphire (?-Al2O3).- Dislocation Dissociation in Chain Silicates.- Anelastic Behavior of Silicate Glass-Ceramics and Partial Melts: Migration of the Amorphous Phase.- Deformation Studies of Quasicrystals.- Deformation of Nonstoichiometric CuO Polycrystals.- Plastic Deformation of Bulk YBaCuO Ceramics Doped with ZrO2.- Impression Plasticity and Creep in Hard Crystals.- Deformation of Advanced Materials: Case of Sapphire Modified by Heavy Ion Implantation and of YBCO Superconducting Crystals.- Spherical Indentation as a Means for Investigating the Plastic Deformation of Ceramics.- The Nanoindentation Response of Silicon and Related Structurally Similar Materials.- Investigation of Depth-Area Relationships Associated with Nanoindentations.- “Nano” and “Micro” Hardnesses of Single Crystal Yttrium Aluminum Garnet (YAG) on the{111} Plane.- Deformation of Thin Ceramic Films Designed for Electronic Applications.- Apparent Indentation Plasticity in Ceramic Coated Systems.- Hardness Change of Nonstoichiometric MgO.3Al2O3 by Neutron Irradiation.- The Cumulative Deformation, Work-Hardening and Fracture of Magnesium Oxide at Room Temperature, Under Repeated Point Loading Conditions.- The Characteristics of Superplastic—like Flow in Ceramics.- Solution-Precipitation Creep Model for Superplastic Ceramics with Intergranular Liquid Film.- A Granular Flow Approach to Fine-Grain Superplasticity.- CreepDeformation of Nanocrystalline Oxides.- Characterization of High-Temperature Superplasticity in Fine-Grained Zirconia Polycrystals.- A Quantitative Analysis of Cavity Formation in Superplastic Yttria-Stabilized Tetragonal Zirconia.- Superplastic Deformation of CuO-Doped 3Y-TZP.- Superplastic Forming of Zirconia.- Superplastic Deformation of Zirconia/Alumina Composites Produced by Reaction Bonding.- Enhanced Ductility of High-Purity Polycrystalline Yttria.- Superplastic Deformation of a Monolithic Silicon Nitride.- Creep Mechanisms in Multiphase Ceramics.- High-Temperature Deformation Mechanisms in Ceramic Materials.- Creep Recovery Mechanisms.- Deformation of High-Temperature Superconductors.- Stable Dislocation Configurations in YBa2Cu3O7-?.- Creep Behavior of Cation Solid Solution Alloys.- Kinetics and Mechanisms of Constant Stress Creep in the Non-Oxide Ceramics of SiC, SiC-Whisker-Reinforced Si3N4 Composites and AlN.- Dislocation Mechanisms in Alpha SiC Deformed at High Temperature.- Evolution of Oxidation and Creep Damage Mechanisms in HIPed Silicon Nitride Materials.- Bend Stress Relaxation and Tensile Primary Creep of Polycrystalline ?-SiC Fiber.- Importance of Cavitation to the Creep of Structural Ceramics.- The Role of Grain Boundary Sliding on Creep Deformation Characteristics of Discontinuous Reinforced Composites.- High-Temperature Deformation of Dual Phase Alumina-Zirconia Composites.- Tensile Creep of Alumina and SiC Whisker-Reinforced Alumina.- Plastic Deformation of Alumina Reinforced with SiC Whiskers.- Creep Behavior in SiC Whisker-Reinforced Alumina Composite.- High-Temperature Creep Behavior of High-Purity Hot-Pressed Silicon Nitride.- Creep and Fatigue of SiC Fiber-Reinforced BMAS Glass-Ceramic Matrix Composites.- Morphology and DeformationCharacteristics of a CMC Based on a MLAS Vitroceramic Matrix.- Fatigue Crack Growth in Ceramics and Ceramic Composites at High Temperatures.- Mechanical Response of Ceramic Composites at Elevated Temperatures.- Issues for Creep and Rupture Evaluation of Ceramic Fibers.- Crack-Wake Plasticity and Time-Dependent Bridging During Subcriticai Crack Growth in CVI-SiC Reinforced with Nicalon Fibers.- Evaluation of Elevated-Temperature Crack Growth in Ceramics under Static and Cyclic Loads.- Effect of Grain Size on Fatigue Crack Growth in Silicon Nitride and Alumina.


Best Sellers


Product Details
  • ISBN-13: 9780306451201
  • Publisher: Springer Science+Business Media
  • Publisher Imprint: Kluwer Academic/Plenum Publishers
  • Height: 254 mm
  • No of Pages: 671
  • Width: 178 mm
  • ISBN-10: 0306451204
  • Publisher Date: 30 Nov 1995
  • Binding: Hardback
  • Language: English
  • Returnable: Y


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Plastic Deformation of Ceramics
Springer Science+Business Media -
Plastic Deformation of Ceramics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Plastic Deformation of Ceramics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!