Progress in Adhesion and Adhesives, Volume 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Progress in Adhesion and Adhesives, Volume 3
Progress in Adhesion and Adhesives, Volume 3

Progress in Adhesion and Adhesives, Volume 3

|
     0     
5
4
3
2
1




Available


About the Book

A solid collection of interdisciplinary review articles on the latest developments in adhesion science and adhesives technology With the ever-increasing amount of research being published, it is a Herculean task to be fully conversant with the latest research developments in any field, and the arena of adhesion and adhesives is no exception. Thus, topical review articles provide an alternate and very efficient way to stay abreast of the state-of-the-art in many subjects representing the field of adhesion science and adhesives. Based on the success of the preceding volumes in this series "Progress in Adhesion and Adhesives"), the present volume comprises 12 review articles published in Volume 5 (2017) of Reviews of Adhesion and Adhesives. The subject of these 12 reviews fall into the following general areas: 1. Nanoparticles in reinforced polymeric composites. 2. Wettability behavior and its modification, including superhydrophobic surfaces. 3. Ways to promote adhesion, including rubber adhesion. 4. Adhesives and adhesive joints 5. Dental adhesion. The topics covered include: Nanoparticles as interphase modifiers in fiber reinforced polymeric composites; fabrication of micro/nano patterns on polymeric substrates to control wettability behavior; plasma processing of aluminum alloys to promote adhesion; UV-curing of adhesives; functionally graded adhesively bonded joints; adhesion between unvulgarized elastomers; electrowetting for digital microfluidics; control of biofilm at the tooth-restoration bonding interface; easy-to-clean superhydrophobic coatings; cyanoacrylates; promotion of resin-dentin bond longevity in adhesive dentistry; and effects of nanoparticles on nanocomposites Mode I and Mode II fractures.

Table of Contents:
Preface xiii 1 Nanoparticles as Interphase Modifiers in Fiber Reinforced Polymeric Composites: A Critical Review 1 Kyle B. Caldwell and John C. Berg 1.1 Introduction 1 1.2 Grown Interphases from Fiber Surfaces 3 1.2.1 Introduction 3 1.2.2 ZnO Nanowhiskers 5 1.2.2.1 Effects of NW Diameter and Length 6 1.2.2.2 Effects of Reinforcing Fiber Surface Chemistry and Roughness 9 1.2.3 Carbon Nanotubes 10 1.2.3.1 Effects of CNT Length 11 1.2.3.2 Effects of CVD Conditions 14 1.2.4 Electroless Plating 15 1.2.5 Conclusions: Grown Interphases from Fiber Surfaces 17 1.3 Deposited Interphases 19 1.3.1 Introduction 19 1.3.2 Advanced Sizing Packages 20 1.3.3 Electrophoretic Deposition 22 1.3.4 Electrostatic Attraction 26 1.3.4.1 Layer-by-layer Deposition 26 1.3.5 Reaction Deposited Interphases 28 1.3.6 Conclusions: Deposited Interphases 30 1.4 Self-assembled Interphases 30 1.4.1 Introduction 30 1.4.2 Migrating Agents 32 1.4.3 Phase Separation 34 1.4.4 Depletion Interaction 35 1.4.5 Conclusions: Self-assembled Interphases 40 1.5 Summary 41 Acknowledgments 43 List of Abbreviations (Alphabetized) 44 References 44 2 Fabrication of Micro/Nano Patterns on Polymeric Substrates Using Laser Ablation Methods to Control Wettability Behaviour: A Critical Review 53 Salma Falah Toosi, Sona Moradi and Savvas G. Hatzikiriakos 2.1 Introduction 53 2.2 Wetting States, Regimes, and Roughness 54 2.2.1 Contact Angle 54 2.2.2 Contact Angle Hysteresis 57 2.3 Laser Ablation: Experimental Setup 58 2.4 Laser Ablation of Polymeric Surfaces 59 2.4.1 Polytetrafluoroethylene (PTFE) 61 2.4.2 Polylactide (PLA and PLLA) 64 2.4.3 Poly(methyl methacrylate) (PMMA) 66 2.4.4 Poly(dimethylsiloxane) (PDMS) 67 2.5 Summary 69 References 70 3 Plasma Processing of Aluminum Alloys to Promote Adhesion: A Critical Review 77 Vinay Kumar Patel and Shantanu Bhowmik 3.1 Introduction 78 3.2 Plasma Processing of Aluminum for Improved Wettability and Adhesion 79 3.3 Plasma Processing of Aluminum Alloy for Improved Corrosion Resistance 85 3.4 Plasma Processing of Aluminum Alloy for Improved Bond Strength 87 3.5 Plasma Processing of Aluminum Alloy for Enhanced Tribological and Mechanical Performance 89 3.6 Summary 95 References 97 4 UV-Curing of Adhesives: A Critical Review 101 Alessandra Vitale, Giuseppe Trusiano and Roberta Bongiovanni 4.1 Introduction 101 4.2 Basics of Radiation Curing 102 4.3 UV-Curing for the Production of Adhesives 112 4.4 Adhesives Obtained by a Single Direct UV-Curing Step 120 4.5 Adhesives Obtained by a Dual-Cure Process 129 4.5.1 UV-Curing and Thermal Cure 130 4.5.2 UV-Curing and Anaerobic Cure 131 4.5.3 UV-Curing and Moisture Cure 132 4.5.4 Other Types of Dual-Cure 133 4.6 Photocurable Adhesives for Medical Applications 135 4.6.1 Tissue Adhesives 135 4.6.2 Bioinspired Tissue Adhesives 136 4.6.3 Dental Adhesives 138 4.7 Light-Induced Reversible Bonding/Debonding 140 4.8 Summary 143 References 144 5 Stress and Failure Analyses of Functionally Graded Adhesively Bonded Joints of Laminated FRP Composite Plates and Tubes: A Critical Review 155 S.V. Nimje and S. K. Panigrahi 5.1 Introduction 156 5.2 Stress Analysis of Adhesively Bonded Joints 157 5.2.1 Stress Analysis of Adhesively Bonded Joints of Laminated FRP Composite Plates 157 5.2.2 Stress Analysis of Adhesively Bonded Joints of Laminated FRP Composite Tubes 162 5.3 Failure Analysis of Adhesively Bonded Joints of Laminated FRP Composite Plates 163 5.4 Failure Analysis of Adhesively Bonded Tubular Joints of Laminated FRP Composites 165 5.5 Failure Analysis of Functionally Graded Bonded Joints 166 5.5.1 Effect of Functionally Graded Plates/Tubes on Joint Failure 167 5.5.2 Effect of Functionally Graded Adhesive on Joint Failure 168 5.6 Summary 178 References 179 6 Adhesion Between Unvulcanized Elastomers: A Critical Review 185 K. Dinesh Kumar, Ganesh C. Basak and Anil K. Bhowmick 6.1 Introduction 186 6.2 Autohesive Tack 187 6.2.1 Autohesive Tack Criteria 188 6.2.2 Theories Related to Autohesive Tack 189 6.2.2.1 Diffusion Theory 189 6.2.2.2 Contact Theory 190 6.2.3 Factors Affecting Autohesive Tack Bond Formation Process 192 6.2.3.1 Effect of Contact Time 192 6.2.3.2 Effect of Contact Pressure 195 6.2.3.3 Effect of Contact Temperature 195 6.2.3.4 Effect of Surface Roughness 197 6.2.4 Factors Affecting Autohesive Tack Bond Destruction Process 198 6.2.4.1 Effect of Test Rate 198 6.2.4.2 Effect of Test Temperature 198 6.2.4.3 Effect of Bond Thickness 198 6.2.5 Effect of Molecular Properties on Autohesive Tack 199 6.2.5.1 Effect of Molecular Weight 199 6.2.5.2 Effect of Microstructure 200 6.2.5.3 Effect of Crystallinity 200 6.2.5.4 Effect of Polar Groups 201 6.2.6 Environmental Effects on Autohesive Tack 202 6.2.6.1 Effect of Surface Oxidation 202 6.2.6.2 Effect of Humidity 202 6.2.7 Effect of Compounding Ingredients on Autohesive Tack 202 6.2.7.1 Effect of Processing Oil 202 6.2.7.2 Effect of Tackifiers 202 6.2.7.2.1 Tackification Mechanism in Pressure-Sensitive Adhesives 203 6.2.7.2.2 Effect of Tackifiers on Autohesive Tack of Elastomers Used in the Rubber Industry 207 6.2.8 Effect of Fillers 230 6.2.8.1 Effect of Carbon Black and Silica on Autohesive Tack of Elastomers Used in the Rubber Industry 230 6.2.8.2 Effect of Nanoclay on Autohesive Tack of Elastomers Used in the Rubber Industry 233 6.3 Self - Healing Elastomers: Future Scope Based on Tack Behavior of Elastomers 240 6.4 Summary 242 Acknowledgements 244 List of Symbols 245 List of Abbreviations 246 References 247 7 Dielectrowetting for Digital Microfluidics: Principle and Application. A Critical Review 253 Hongyao Geng and Sung Kwon Cho 7.1 Introduction 254 7.2 Electrostatic Forces on a Liquid 257 7.3 Electrowetting on Dielectric (EWOD) 258 7.4 Liquid-Dielectrophoresis (L-DEP) 261 7.5 L-DEP in Microfluidics 265 7.6 Dielectrowetting 266 7.7 Droplet Manipulations by Dielectrowetting 273 7.7.1 Experimental Setup 273 7.7.2 Droplet Splitting and Transporting 275 7.7.3 Multi-Splitting and Merging of Droplets 275 7.7.4 Droplet Creating 276 7.7.5 Manipulations of Aqueous Droplets 277 7.8 Concluding Remarks and Outlook 278 7.9 Acknowledgement 281 References 281 8 Control of Biofilm at the Tooth-Restoration Bonding Interface: A Question for Antibacterial  Monomers? A Critical Review 287 Mary Anne S. Melo, Michael D. Weir, Fang Li, Lei Cheng, Ke Zhang and Hockin H. K. Xu 8.1 Introduction 288 8.2 Tooth-Restoration Bonding Interface Failure: The Bacterial Factor 290 8.3 Mechanism of Adhesive-Bacteria Interaction 292 8.4 Current Antibacterial Approaches via Components of Tooth/Restoration Interface Bonding Materials (Dental Primers and Adhesives) 293 8.5 Incorporation of Quaternary Ammonium-Based Monomers and its Impact on the Mechanical Properties 295 8.6 Long-Lasting Antibacterial Activity 297 8.7 Biocompatibility 298 8.8 Limitations 299 8.9 Prospects 301 8.10 Summary 301 References 301 9 Easy-to-Clean Superhydrophobic Coatings Based on Sol-Gel Technology: A Critical Review 307 S. Czyzyk, A.Dotan, H. Dodiuk, and S. Kenig 9.1 Introduction 308 9.2 Superhydrophobicity: Key Concepts 308 9.2.1 Morphology Characterization of a Superhydrophobic Surface 312 9.2.1.1 Roughness Characterization 313 9.2.1.2 Porosity Characterization 315 9.2.2 Superhydrophobicity Fabrication Methods 315 9.2.2.1 Top-Down 315 9.2.2.2 Bottom-Up 316 9.3 Sol-Gel Process 316 9.3.1 Process Stages 317 9.3.1.1 Factors Affecting the Reaction Kinetics and the Final Product 319 9.3.1.1.1 Main Factors Affecting the Sol-Gel Process 319 9.3.2 Organofunctional Alkoxysilane – A Hybrid Sol-Gel 322 9.3.2.1 Hybrid Sol-Gel Fabrication Methods 323 9.3.2.2 Easy-to-Clean Superhydrophobic Sol-Gel Coatings 327 9.3.2.3 Properties of Superhydrophobic Coatings Fabricated via Sol-Gel Method 329 9.4 Summary 333 Acknowledgement 334 List of Abbreviations 334 References 335 10 Cyanoacrylates: Towards High Temperature Resistant Instant Adhesives. A Critical Review 341 Barry Burns 10.1 Introduction 341 10.2 Industrial Production of Cyanoacrylates 343 10.3 Reactivity and Polymerisation of Cyanoacrylates 344 10.4 Durability and Degradation of Polycyanoacrylate Polymers 347 10.4.1 Durability of Cyanoacrylate Adhesive Bonds 349 10.4.2 Hot Strength Performance 349 10.4.3 Thermal Resistance Performance 350 10.5 Strategies to Improve Thermal Durability 351 10.5.1 Crosslinking Strategies 352 10.5.1.1 Multifunctional or Bis-Cyanoacrylate Cross-Linking Approaches 352 10.5.1.2 Alkyl-2-Cyanopentadienoate Cross-Linking Approaches 353 10.5.1.3 Allyl Cyanoacrylate Crosslinking Approaches 356 10.5.2 Additive Strategies 357 10.6 Summary 361 Acknowledgements 364 References 364 11 Strategies to Inactivate the Endogenous Dentin Proteases to Promote Resin-Dentin Bond Longevity in Adhesive Dentistry: A Critical Review 369 Regina Guenka Palma-Dibb, Lourenço de Moraes Rego Roselino, Pedro Turrini Neto and Juliana Jendiroba Faraoni 11.1 Introduction 369 11.2 Enzymes in Dentin 370 11.3 Enzymes Inactivation/Collagen Cross-Linking 373 11.3.1 Natural Crosslinkers 374 11.3.1.1 Proanthocianidin – Grape Seed Extract (PA) 374 11.3.1.2 Chitosan (CH) 375 11.3.1.3 Epigallocatechin-3-gallate (EGCG) 376 11.3.1.4 Low Dose Riboflavin/UVA-Activated Riboflavin 376 11.3.1.5 Genipin 377 11.3.1.6 Hesperidin 377 11.3.1.7 Galardin 377 11.3.2 Synthetic Crosslinkers 377 11.3.2.1 Chlorhexidine (CHX) 377 11.3.2.2 Glutaraldehyde (GA) 378 11.3.2.3 Carbodiimide 378 11.3.2.4 Quaternary Ammoniun Compounds (QACs) 379 11.3.2.5 Ethylenediaminetetraacetic Acid (EDTA) 380 11.3.2.6 Tetracycline 380 11.4 Clinical Considerations 380 11.5 Summary 380 Acknowledgment 382 References 382 12 Effects of Nanoparticles on Nanocomposites Mode I and II Fracture: A Critical Review 391 P. Ghabezi and M. Farahani 12.1 Introduction 391 12.2 Energy Release Rate 392 12.3 Traction-Separation Laws 394 12.4 Effect of Nanoparticles on Mode I and II Fracture 396 12.5 Traction – Separation Laws in Mode I and II (Case Study) 405 12.5.1 Materials, Geometry and Test Parameters 406 12.6 Summary 407 Acknowledgement 408 Nomenclature 408 References 408


Best Sellers


Product Details
  • ISBN-13: 9781119526292
  • Publisher: John Wiley & Sons Inc
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 10 mm
  • Width: 10 mm
  • ISBN-10: 1119526299
  • Publisher Date: 24 Jul 2018
  • Height: 10 mm
  • No of Pages: 432
  • Returnable: N
  • Weight: 788 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Progress in Adhesion and Adhesives, Volume 3
John Wiley & Sons Inc -
Progress in Adhesion and Adhesives, Volume 3
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Progress in Adhesion and Adhesives, Volume 3

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!