Properties of QCD Matter at High Baryon Density - Bookswagon
Home > Science & Mathematics > Physics > Nuclear structure physics > Properties of QCD Matter at High Baryon Density
Properties of QCD Matter at High Baryon Density

Properties of QCD Matter at High Baryon Density


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
About the Book

This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 11 GeV), FAIR at GSI (2 4.9 GeV SIS100), HIAF at IMP (2 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.



About the Author:

Xiaofeng Luo is currently a professor at the Department of Physics, Central China Normal University, China. He received his Ph.D. degree (2011) from the Department of Modern Physics, University of Science and Technology of China, and was co-trained at Lawrence Berkeley National Laboratory from 2009 to 2011. He joined Central China Normal University, China, after graduation and worked as a visiting scholar at the University of Tsukuba, Japan, and the University of California, Los Angeles, the USA. In 2018, he was awarded the Merit Award of Brookhaven National Laboratory, the USA. In 2021, he received the National Science Fund for Outstanding Young Scholars of China. He is the convenor of the STAR Experiment Fluctuation and Correlation Analysis Group and a board member of CBM Experiment. In the past decade, he has been working on the experimental study of the critical point of QCD phase transition in high-energy heavy-ion collisions.

Qun Wang is currently a professor at the Department of Modern Physics, the University of Science and Technology of China. He received Ph.D. degree in particle physics and nuclear physics from Shandong University in 1997. He was named the Humboldt Visiting Scholar at the Institute of Theoretical Physics, the University of Frankfurt, Germany, from 2000 to 2003, and worked there as a visiting professor from 2003 to 2005. He was a senior visiting scholar at the Department of Physics, Brookhaven National Laboratory, the USA, in 2014. He was named in the Hundred-Talent Program by the Chinese Academy of Sciences and received the National Science Fund for Distinguished Young Scholars in 2012. His main research interests include quantum field theory and quantum chromodynamics at finite temperature and density, phenomenology of heavy-ion collisions, and nuclear astrophysics.

Nu Xu is currently a senior scientist at Lawrence Berkeley National Laboratory, Berkeley, the USA. He received his B.S. degree from the University of Science and Technology of China and Ph.D. degree in physics from the State University of New York, Stony Brook, the USA, in 1991. After two postdoctoral periods, he joined the Lawrence Berkeley National Laboratory in 1997. In 2010, he joined the faculty of Central China Normal University, and in 2018, he became a scientist at the Institute of Modern Physics, Chinese Academy of Sciences. Throughout his career, he has focused on the experimental study of the QCD phase structure in high-energy nuclear collisions.

Pengfei Zhuang is currently a professor at the Department of Physics, Tsinghua University, China. He received his Ph.D. degree from Central China Normal University in 1990. He studied and worked in Germany after that and was awarded the Humboldt Research Fellowship in Germany in 1992. He joined Tsinghua University since his return to China in 1997. His research area is particle physics and nuclear physics, and his research interests are in high-energy heavy-ion collisions and strong interaction phase transition theory. He was awarded the National Science Fund for Distinguished Young Scholars of China in 1999, the Wu Youxun Physics Prize of the Chinese Physical Society in 2011, and the Second Prize of Natural Science Awards by the Ministry of Education of China in 2014.



Best Sellers



Product Details
  • ISBN-13: 9789811944406
  • Publisher: Springer Nature Singapore
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 684 gr
  • ISBN-10: 9811944407
  • Publisher Date: 02 Dec 2022
  • Height: 230 mm
  • No of Pages: 287
  • Spine Width: 6 mm
  • Width: 148 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Properties of QCD Matter at High Baryon Density
Springer Nature Singapore -
Properties of QCD Matter at High Baryon Density
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Properties of QCD Matter at High Baryon Density

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!