Protein Folding in Silico
Home > Mathematics and Science Textbooks > Biology, life sciences > Biochemistry > Protein Folding in Silico: Protein Folding Versus Protein Structure Prediction
Protein Folding in Silico: Protein Folding Versus Protein Structure Prediction

Protein Folding in Silico: Protein Folding Versus Protein Structure Prediction

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Protein folding is a process by which a protein structure assumes its functional shape of conformation, and has been the subject of research since the publication of the first software tool for protein structure prediction. Protein folding in silico approaches this issue by introducing an ab initio model that attempts to simulate as far as possible the folding process as it takes place in vivo, and attempts to construct a mechanistic model on the basis of the predictions made. The opening chapters discuss the early stage intermediate and late stage intermediate models, followed by a discussion of structural information that affects the interpretation of the folding process. The second half of the book covers a variety of topics including ligand binding site recognition, the "fuzzy oil drop" model and its use in simulation of the polypeptide chain, and misfolded proteins. The book ends with an overview of a number of other ab initio methods for protein structure predictions and some concluding remarks.

Table of Contents:
Dedication List of figures List of tables About the editor List of contributors Introduction Chapter 1: The early-stage intermediate Abstract 1.1 Geometric model 1.2 Structural alphabet 1.3 Contingency table 1.4 In search of structural similarities Chapter 2: The late-stage intermediate Abstract: 2.1 The “ fuzzy oil drop ” model 2.2 Quantitative description of the hydrophobic core 2.3 Protein characteristics with respect to the hydrophobic core 2.4 Simulation of late-stage folding Chapter 3: Structural information involved in the interpretation of the stepwise protein folding process Abstract: 3.1 Balancing the quantity of information in the amino acid sequence and the early-stage intermediate 3.2 Zones on the Ramachandran map Chapter 4: The divergence entropy characterizing the internal force field in proteins Abstract: 4.1 Internal force field for nonbonding interactions 4.2 The impact of ligands 4.3 Structures of homodimers – protein-protein interaction 4.4 Protein containing a catalytic center 4.5 The role of exons 4.6 Conclusions Chapter 5: Ligand-binding-site recognition Abstract: 5.1 General model 5.2 ROC curves 5.3 Summary Chapter 6: Use of the “fuzzy oil drop” model to identify the complexation area in protein homodimers Abstract: 6.1 General description 6.2 ROC curves 6.3 Conclusions Chapter 7: Simulation of the polypeptide chain folding process using the "fuzzy oil drop" model Abstract: 7.1 Simulation of the folding process in the presence of an external hydrophobic force field 7.2 Folding in the presence of a ligand 7.3 Influence of external factors on polypeptide chain folding Chapter 8: Misfolded proteins Abstract: 8.1 Introduction 8.2 In silico experiment 8.3 Conclusions 8.4 Appendix 1: details of the molecular dynamics simulation 8.5 Appendix 2: details of the cluster analysis Chapter 9: A Short description of other selected ab initio methods for protein structure prediction Abstract: 9.1 Introduction 9.2 Simplifying the geometric model and the field function 9.3 Lattice model 9.4 ROSETTA 9.5 In search of a global minimum – force field deformation Chapter 10: Conclusion Abstract: 10.1 Acknowledgements Index


Best Sellers


Product Details
  • ISBN-13: 9781907568176
  • Publisher: Elsevier Science & Technology
  • Binding: Hardback
  • Language: English
  • Sub Title: Protein Folding Versus Protein Structure Prediction
  • Width: 156 mm
  • ISBN-10: 1907568174
  • Publisher Date: 04 Oct 2012
  • Height: 234 mm
  • No of Pages: 240
  • Weight: 500 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Protein Folding in Silico: Protein Folding Versus Protein Structure Prediction
Elsevier Science & Technology -
Protein Folding in Silico: Protein Folding Versus Protein Structure Prediction
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Protein Folding in Silico: Protein Folding Versus Protein Structure Prediction

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!