Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Home > Environment & Geography > Earth sciences > Hydrology & the hydrosphere > Oceanography (seas) > Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling

Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling


     0     
5
4
3
2
1



International Edition


About the Book

Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. A solution could be the in use of several specialized models organized in the so-called committees. Refining the committee approach is one of the important topics of this study, and it is demonstrated that it allows for increased predictive capability of models.

Another topic addressed is the prediction of hydrologic models' uncertainty. The traditionally used Monte Carlo method is based on the past data and cannot be directly used for estimation of model uncertainty for the future model runs during its operation. In this thesis the so-called MLUE (Machine Learning for Uncertainty Estimation) approach is further explored and extended; in it the machine learning techniques (e.g. neural networks) are used to encapsulate the results of Monte Carlo experiments in a predictive model that is able to estimate uncertainty for the future states of the modelled system.

Furthermore, it is demonstrated that a committee of several predictive uncertainty models allows for an increase in prediction accuracy. Catchments in Nepal, UK and USA are used as case studies.

In flood modelling hydrological models are typically used in combination with hydraulic models forming a cascade, often supported by geospatial processing. For uncertainty analysis of flood inundation modelling of the Nzoia catchment (Kenya) SWAT hydrological and SOBEK hydrodynamic models are integrated, and the parametric uncertainty of the hydrological model is allowed to propagate through the model cascade using Monte Carlo simulations, leading to the generation of the probabilistic flood maps. Due to the high computational complexity of these experiments, the high performance (cluster) computing framework is designed and used.

This study refined a number of hydroinformatics techniques, thus enhancing uncertainty-based hydrological and integrated modelling.


About the Author:

Nagendra Kayastha graduated in Civil Engineering (MSc) from the St. Petersburg State University of Means of Communication, St. Petersburg, Russia, in 1997, with a specialization in Bridge and Tunnel Engineering. He was engaged as a consulting engineer in Morrison Knudson International Inc.(USA), for the Kaligandaki 'A' Hydropower Project in western Nepal. After completion of this project, he continued working at a consulting company in Nepal and was assigned to various national and international water-related projects. In 2005, he joined the MSc degree programme in Water Science and Engineering, specializing in Hydroinformatics at UNESCO-IHE Institute for Water Education, Delft, The Netherlands. His MSc research topic was on the "Novel approaches to uncertainty analysis of hydrological model" which covered new methods for uncertainty prediction of hydrological models using machine learning techniques. After completion of his study, he joined the special research programme at Hydroinformatics and Knowledge Management Department. He was involved in projects of the Delft Cluster Research Programme and in the EU project FLOODsite. He joined the PhD programme of the UNESCO-IHE and the Delft University of Technology, under the supervision of Professor Dimitri Solomatine with the co-supervision of Professor Ann van Griensven (Vrije Universiteit, Brussels) in 2010. He contributed to several research projects, namely EnviroGRIDs, WeSenseIT, and MyWater and has assisted in the Master programme in Hydroinformatics. He published more than 15 technical papers in international journals and conferences.


Best Sellers



Product Details
  • ISBN-13: 9781138373273
  • Publisher: Taylor & Francis
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 0 mm
  • Width: 170 mm
  • ISBN-10: 1138373273
  • Publisher Date: 27 Sep 2018
  • Height: 240 mm
  • No of Pages: 200
  • Series Title: Ihe Delft PhD Thesis
  • Weight: 503 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Taylor & Francis -
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!