Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications
Home > Technology & Engineering > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications
Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications

Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications


     0     
5
4
3
2
1



Available


About the Book

Chapter 1: Introduction. 1.1 CMOS scaling: evolutionary era. 1.2 CMOS scaling: revolutionary era. 1.3 High mobility channels for future CMOS technology nodes. 1.4 Reliability limitations. 1.5 Variability issues. 1.6 Objectives and structure of this work. 1.7 Summary of this Chapter. References.

Chapter 2: Degradation mechanisms. 2.1 Introduction. 2.2 Negative Bias Temperature Instability (NBTI). 2.3 Hot Carriers. 2.4 Time Dependent Dielectric Breakdown. 2.5 Summary of this Chapter. References.

Chapter 3: Techniques and devices. 3.1 Introduction. 3.2 Advanced NBTI measurement techniques. 3.3 Techniques and methodologies used in this work. 3.4 Devices used in this work. 3.5 Structures used in this work. 3.6 Summary of this Chapter. References.

Chapter 4: Negative Bias Temperature Instability in (Si)Ge pMOSFETs. 4.1 Introduction. 4.2 Impact of the individual gate stack parameters. 4.3 Gate stack optimization: demonstrating sufficient NBTI reliability at UT-EOT. 4.4 Process- and architecture-independent results. 4.5 Detailed discussion of the experimental results. 4.6 Body Bias and NBTI. 4.7 Model. 4.8 Final considerations: performance vs. reliability. 4.9 Summary of this Chapter. References.

Chapter 5: Negative Bias Temperature Instability in nanoscale devices. 5.1 Introduction. 5.2 NBTI on nanoscale SiGe devices. 5.3 Implications for the time-dependent variability. 5.4 Model. 5.5 Impact of Single Charged Gate Oxide Defects: Area scaling. 5.6 Impact of single charged gate oxide defects on the entire FET current characteristics: VG-dependence. 5.7 Impact of single charged gate oxide defects: body bias dependence. 5.8 Summary of this Chapter. References.

Chapter 6: Channel Hot Carriers and other reliability mechanisms. 6.1 Introduction. 6.2 Experimental methodology for studying the interplay of CHC and NBTI. 6.3 Interaction of CHC and NBTI in pMOSFETs. 6.4 CHC in SiGe pMOSFETs. 6.5 CHC in Ge pMOSFETs. 6.6 Other reliability mechanisms. 6.7 Summary of this Chapter. References.

Chapter 7: Conclusions and perspectives. 7.1 Conclusions. 7.2 Perspectives.
About the Author:

Jacopo Franco received the M.Sc. in Electronic Engineering from Università della Calabria, Italy, in 2008 and the Ph.D. degree in Engineering from the KU Leuven, Belgium, in 2013. He is currently a Researcher in the reliability group of imec, Leuven, Belgium. His research interests focus on the reliability of high-mobility channel transistors for future CMOS nodes and on variability issues in nanoscale devices. He has co-authored more than 70 papers in international journal and conference proceedings and received the Best Student Paper Award at SISC (2009), the EDS Ph.D. Student Fellowship (2012), the EDS Paul Rappaport Award (2011), and the Best Paper Award at IRPS (2012).

Ben Kaczer is a Principal Scientist at imec, Belgium. He received the M.S. degree in Physical Electronics from Charles University, Prague, in 1992 and the M.S. and Ph.D. degrees in Physics from The Ohio State University, in 1996 and 1998, respectively. In 1998 he joined the reliability group of imec. He has co-authored more than 300 papers and received 5 Best or Outstanding IRPS and 1 IPFA Paper Awards. He is currently serving on the IEEE T. Electron Dev. Editorial Board.

Guido Groeseneken received the M.Sc. degree in 1980 and the Ph.D degree in applied sciences in 1986, both from the KU Leuven, Belgium. In 1987 he joined the R&D Laboratory of imec, Leuven, Belgium, where he is responsible for research in reliability physics for deep submicron CMOS technologies and in nanotechnology for post-CMOS applications. Since 2001 he is Professor at the KU Leuven, where he is Program Director of the Master in Nanoscience and Nanotechnology and coordinating a European Erasmus Mundus Master program in Nanoscience and nanotechnology. He became an IEEE Fellow in 2005 and an IMEC Fellow in 2007.


Best Sellers



Product Details
  • ISBN-13: 9789400776623
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Edition: 2014 ed.
  • Language: English
  • Returnable: Y
  • Spine Width: 13 mm
  • Width: 156 mm
  • ISBN-10: 9400776624
  • Publisher Date: 29 Oct 2013
  • Binding: Hardback
  • Height: 234 mm
  • No of Pages: 187
  • Series Title: Springer Advanced Microelectronics
  • Weight: 517 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications
Springer -
Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!