Representation Learning for Natural Language Processing
Home > Computer & Internet > Computer science > Audio processing > Representation Learning for Natural Language Processing
Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing


     0     
5
4
3
2
1



International Edition


About the Book

This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions.

The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition.

This is an open access book.


About the Author:

Zhiyuan Liu is an Associate Professor at the Department of Computer Science and Technology at Tsinghua University, China. His research interests include pretrained language models, knowledge graphs and social computation, and he has published more than 120 papers at leading conferences and in respected journals with over 28000 Google Scholar citations. He has received several awards/honors, including Excellent Doctoral Dissertation awards from Tsinghua University and the Chinese Association for Artificial Intelligence, and was named as one of MIT Technology Review Innovators Under 35 China (MIT TR-35 China). He has served as area chair for various conferences, including ACL, EMNLP, COLING.

Yankai Lin is an Assistant Professor at Gaoling School of Artificial Intelligence, Renmin University of China. His research interests include pretrained language models and knowledge-guided natural language processing. He has published more than 50 papers at leading conferences, including ACL, EMNLP, IJCAI, AAAI and NeurIPS with over 8000 Google Scholar citations. He was named an Academic Rising Star of Tsinghua University and a Baidu Scholar. He has served as area chair for EMNLP and ACL ARR.

Maosong Sun is a professor at the Department of Computer Science and Technology and the executive vice-dean of the Institute for Artificial Intelligence, Tsinghua University. His research interests include natural language processing, artificial intelligence, computational humanities and social sciences. He was a project chief scientist of the National Key Basic Research and Development Program (973 Program) of China. He has published over 200 papers at leading academic conferences and in respected journals, with over 30,000 Google Scholar citations. He is the director of Tsinghua University-National University of Singapore Joint Research Center on Next Generation Search Technologies, and the editor-in-chief of the Journal of Chinese Information Processing. He received the National Outstanding Practitioner Award from the State Commission for Language Affairs, People's Republic of China in 2007, and the National Excellent Scientific and Technological Practitioner Award from the China Association for Science and Technology in 2016. He became the Member of the Academia Europaea in 2020, and the Fellow of the Association for Computational Linguistics (ACL) in 2022.



Best Sellers



Product Details
  • ISBN-13: 9789819916023
  • Publisher: Springer Nature Singapore
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 802 gr
  • ISBN-10: 981991602X
  • Publisher Date: 03 Jul 2023
  • Height: 234 mm
  • No of Pages: 550
  • Spine Width: 28 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Representation Learning for Natural Language Processing
Springer Nature Singapore -
Representation Learning for Natural Language Processing
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Representation Learning for Natural Language Processing

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!