Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms
Home > Computer & Internet > Computer science > Artificial intelligence > Expert systems / knowledge-based systems > Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms
Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms

Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms


     0     
5
4
3
2
1



International Edition


About the Book

Chapter 1: Introduction

(a) Reconfigurable hardware based embedded systems

(b) Importance of Real Time Scheduling for such embedded architectures

(c) Importance of Self Aware Security for such architectures

Chapter 2: Background

(a) Scheduling for embedded real time tasks and limitations of existing techniques

(b) Security related to hardware attacks and limitations of existing techniques

Chapter 3: A novel real-time scheduling for FPGAs having slotted area model

This chapter presents deadline-partition oriented scheduling methodologiesfor periodic hard real-time dynamic task sets on fully and partiallyreconfigurable FPGAs in which the floor of the FPGA is assumed to be statically equi-partitioned into a set of homogeneous tiles such that anyarbitrary task of the given task set may be feasibly mapped into the areaof a given tile.

Chapter 4: A novel real-time scheduling for FPGAs having flexible area model

This chapter presents scheduling methodologies for periodic dependent hard real-time dynamic task sets on fully and partially reconfigurable FPGAs in which the floor of the FPGA follows flexible area model such that any task can be placed anywhere within the floor area. This will work will attempt to solve both the temporal and spatial aspects of the scheduling.

Chapter 5: Denial of Service Attacks for Real Time Scheduling and Related Mitigation Techniques

This chapter presents threat analysis associated with denial of service attacks due to delay inducing hardware trojans in embedded architectures for the scheduling strategies presenteed in Chapter 3 and 4. A self aware security module is also presented that detects and mitigates the threat.

Chapter 6: Erroneous Result Generation Attack for Real Time Scheduling and Related Mitigation Technique

This chapter presents threat analysis associated with generation of erroneous results that may jeopardize the real time task schedules presented in Chapter 3 and 4. Related detection and mitigation techniques are presented alongwith. In addition to this, it is also described how related modifications of the self aware security module can ensure security for the present scenario.

Chapter 7: Conclusion

In this book, we present the importance of real time scheduling for reconfigurable hardware based embedded platforms and related security needs. We present limitations of existing techniques and present some new real time scheduling techniques suitable for the embedded platform. We also focus on how denial of service and erroneous result generation may take place on the real time schedules due to vulnerability of hardware. Related detection and mitigation techniques are discussed, along with description of a self aware module that facilitates detection and mitigation from such threats.


About the Author:

Dr. Krishnendu Guha is presently an Assistant Professor (On Contract) at National Institute of Technology (NIT), Jamshedpur, India. Prior to this, he was a Visiting Scientist in Indian Statistical Institute (ISI), Kolkata, India from December 2020-February 2021. He was also an Intel India Research Fellow from December 2019- December 2020. He has completed his Ph.D. from University of Calcutta. In his Ph.D. tenure, he received the prestigious INSPIRE Fellowship Award from the Department of Science and Technology, Government of India and the Intel India Final Year Ph.D. Fellowship Award from Intel Corporations, India. He completed his MTech from University of Calcutta, where he was the recipient of the University Gold Medal for securing the First Class First Rank. His present research arena encompasses embedded security, with a flavor of artificial intelligence and nature-inspired strategies.


Dr. Sangeet Saha received his Ph.D. degree in Information Technology from the University of Calcutta, India in 2018. He received the TCS Industry Fellowship Award during his Ph.D. After submitting his Ph.D. thesis in 2017, he worked as a visiting scientist at Indian Statistical Institute (ISI) Kolkata, India. Since May 1, 2018 he is a Senior Research Officer in EPSRC National Centre for Nuclear Robotics, based in the EIS Lab, School of Computer Science and Electronic Engineering at University of Essex, UK. Primarily, his research expertise is in embedded systems, with specific interests that include real-time scheduling, scheduling for reconfigurable computers, fault-tolerance, and approximation-based real-time computing.

Prof. (Dr.) Amlan Chakrabarti is presently Professor and Director of A. K. Choudhury School of Information Technology (AKCSIT), University of Calcutta. Prior to this, he completed his post-doctoral research at Princeton University after completing his Ph.D. from the University of Calcutta in association with ISI, Kolkata. He has been associated with research projects funded by government agencies and industries related to Reconfigurable Architecture, VLSI Design, Security for Cyber-physical Systems, Internet of Things, Machine Learning, Computer Vision and Quantum Computing. He is the Series Editor of Springer Transactions on Computer Systems and Networks and Associate Editor of Elsevier Journal of Computers and Electrical Engineering. His present research interests include Reconfigurable Computing, Embedded Systems Design, VLSI Design, Quantum Computing and Computer Vision. He is a Distinguished Visitor of IEEE Computer Society and Distinguished Speaker of ACM (2017-2020).


Best Sellers



Product Details
  • ISBN-13: 9783030797034
  • Publisher: Springer Nature Switzerland AG
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 344 gr
  • ISBN-10: 3030797031
  • Publisher Date: 25 Aug 2022
  • Height: 235 mm
  • No of Pages: 183
  • Spine Width: 11 mm
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms
Springer Nature Switzerland AG -
Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Self Aware Security for Real Time Task Schedules in Reconfigurable Hardware Platforms

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!