Single Flux Quantum Integrated Circuit Design - Bookswagon
Home > Technology & Engineering > Electronics & communications engineering > Electronics engineering > Circuits & components > Single Flux Quantum Integrated Circuit Design
Single Flux Quantum Integrated Circuit Design

Single Flux Quantum Integrated Circuit Design


     0     
5
4
3
2
1



International Edition


About the Book

High efficiency, large scale, stationary computing systems - supercomputers and data centers - are becoming increasingly important due to the movement of data storage and processing onto remote cloud servers. This book is dedicated to a technology particularly appropriate for this application - superconductive electronics, in particular, rapid single flux quantum circuits. The primary purpose of this book is to introduce and systematize recent developments in superconductive electronics into a cohesive whole to support the further development of large scale computing systems.

A brief background into the physics of superconductivity and the operation of common superconductive devices is provided, followed by an introduction into different superconductive logic families, including the logic gates, interconnect, and bias current distribution. Synchronization, fabrication, and electronic design automation methodologies are presented, reviewing both widely established concepts and techniques as well as recent approaches. Issues related to memory, synchronization, bias networks, and testability are described, and models, circuits, algorithms, and design methodologies are discussed and placed in context. The aim of this book is to provide insight and engineering intuition into the design of large scale digital superconductive circuits and systems.


About the Author:

Gleb Krylov graduated from the National Research Nuclear University MEPhI in Moscow, Russia, in 2014, with the Specialist degree in computer science and engineering. He received the M.S. degree from the University of Rochester in Rochester, New York, in 2017, where he is currently completing the Ph.D. degree, both in electrical and computer engineering. His current research interests include superconductive and cryogenic electronics, quantum computing, and electronic design automation.

Eby G. Friedman received the B.S. degree in electrical engineering from Lafayette College and the M.S. and Ph.D. degrees in electrical engineering from the University of California at Irvine. He was with Hughes Aircraft Company for a dozen years where he was responsible for the design and test of high performance digital and analog ICs. He has been with the Department of Electrical and Computer Engineering, University of Rochester since 1991, where he is a Distinguished Professor and the Director of the High Performance VLSI/IC Design and Analysis Laboratory. He is also a Visiting Professor with the Technion--Israel Institute of Technology. He has authored over 500 papers and book chapters, 22 patents, and authored or edited 19 books in the fields of high speed and low power CMOS design techniques, 3-D design methodologies, high speed interconnect, superconductive circuits, and the theory and application of synchronous clock and power distribution networks. His current research and teaching interests include high performance synchronous digital and mixed-signal circuit design and analysis with application to high speed portable processors, low power wireless communications, and server farms.

Dr. Friedman is a recipient of the IEEE Circuits and Systems Mac Van Valkenburg Award, IEEE Circuits and Systems Charles A. Desoer Technical Achievement Award, the University of Rochester Graduate Teaching Award, and the College of Engineering Teaching Excellence Award. He was previously the Editor-in-Chief and Chair of the steering committee of the IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Editor-in-Chief of the Microelectronics Journal, and Regional Editor of the Journal of Circuits, Systems and Computers, an editorial board member of numerous journals, and a program and technical chair of several IEEE conferences. He is an IEEE Fellow, Senior Fulbright Fellow, National Sun Yat-sen University Honorary Chair Professor, and an inaugural member of the UC Irvine Engineering Hall of Fame.


Best Sellers



Product Details
  • ISBN-13: 9783030768874
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 253
  • Spine Width: 14 mm
  • Width: 156 mm
  • ISBN-10: 3030768872
  • Publisher Date: 10 Oct 2022
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 431 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Single Flux Quantum Integrated Circuit Design
Springer International Publishing -
Single Flux Quantum Integrated Circuit Design
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Single Flux Quantum Integrated Circuit Design

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!