Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems
Home > Technology & Engineering > Electronics & communications engineering > Electronics engineering > Microwave technology > Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems
Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

|
     0     
5
4
3
2
1




International Edition


About the Book

In control theory, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by application of a discontinuous control signal that forces the system to slide along a cross-section of the system's normal behaviour. In recent years, SMC has been successfully applied to a wide variety of practical engineering systems including robot manipulators, aircraft, underwater vehicles, spacecraft, flexible space structures, electrical motors, power systems, and automotive engines.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems addresses the increasing demand for developing SMC technologies and comprehensively presents the new, state-of-the-art sliding mode control methodologies for uncertain parameter-switching hybrid systems. It establishes a unified framework for SMC of Markovian jump singular systems and proposes new SMC methodologies based on the analysis results. A series of problems are solved with new approaches for analysis and synthesis of switched hybrid systems, including stability analysis and stabilization, dynamic output feedback control, and SMC. A set of newly developed techniques (e.g. average dwell time, piecewise Lyapunov function, parameter-dependent Lyapunov function, cone complementary linearization) are exploited to handle the emerging mathematical/computational challenges.

Key features:

  • Covers new concepts, new models and new methodologies with theoretical significance in system analysis and control synthesis
  • Includes recent advances in Markovian jump systems, switched hybrid systems, singular systems, stochastic systems and time-delay systems
  • Includes solved problems
  • Introduces advanced techniques

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems is a comprehensive reference for researchers and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduate and graduates studying in these areas.


About the Author:

Ligang Wu received the PhD degree in Control Theory and Control Engineering in 2006 from Harbin Institute of Technology, China. He was a Research Associate at Imperial College London, UK, and The University of Hong Kong, Hong Kong; a Senior Research Associate at City University of Hong Kong, Hong Kong. Now, he is a Professor of Control Science and Engineering at Harbin Institute of Technology, Harbin, China. Prof. Wu's current research interests include sliding mode control, switched hybrid systems, optimal control and filtering, aircraft control, and model reduction.
Prof. Wu has been in the editorial board of a number of international journals, including IEEE Transactions on Automatic Control, IEEE Access, Information Sciences, Signal Processing, IET Control Theory and Applications, Circuits Systems and Signal Processing, Multidimensional Systems and Signal Processing, and Neurocomputing. He is also an Associate Editor for the Conference Editorial Board, IEEE Control Systems Society.

Peng Shi received the PhD degree in Electrical Engineering from the University of Newcastle, Australia; the PhD degree in Mathematics from the University of South Australia; and the DSc degree from the University of Glamorgan, UK. He was a lecturer at the University of South Australia; a senior scientist in the Defence Science and Technology Organisation, Australia; and a professor at the University of Glamorgan, UK. Now, he is a professor at The University of Adelaide; and Victoria University, Australia. Prof. Shi's research interests include system and control theory, computational intelligence, and operational research.
Prof. Shi is a Fellow of the Institution of Engineering and Technology, and a Fellow of the Institute of Mathematics and its Applications. He has been in the editorial board of a number of international journals, including IEEE Transactions on Automatic Control; Automatica; IEEE Transactions on Fuzzy Systems; IEEE Transactions on Cybernetics; and IEEE Transactions on Circuits and Systems-I.

Xiaojie Su was born in Henan, China, in 1985. He received the B.E. degree in automation from Jiamusi University, Jiamusi, China, in 2008, the M.S. degree in Control Science and Engineering from Harbin Institute of Technology, Harbin, China, in 2010, and the PhD degree in Control Science and Engineering from Harbin Institute of Technology, Harbin, China, in 2013. Currently, he is a Professor of College of Automation at Chongqing University, Chongqing, China. His research interests include sliding mode control, robust filtering, T-S fuzzy systems, and model reduction. As a Guest Editor, he has organized two special issues in Mathematical Problems in Engineering and Abstract and Applied Analysis, respectively.


Best Sellers



Product Details
  • ISBN-13: 9781118862599
  • Publisher: Wiley
  • Publisher Imprint: Wiley
  • Depth: 19
  • Language: English
  • Returnable: Y
  • Spine Width: 20 mm
  • Width: 178 mm
  • ISBN-10: 1118862597
  • Publisher Date: 14 Jul 2014
  • Binding: Hardback
  • Height: 274 mm
  • No of Pages: 288
  • Series Title: Wiley Dynamics and Control of Electromechanical Systems
  • Weight: 639 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems
Wiley -
Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!