Small-Angle Scattering from Confined and Interfacial Fluids
Small-Angle Scattering from Confined and Interfacial Fluids

Small-Angle Scattering from Confined and Interfacial Fluids


     0     
5
4
3
2
1



International Edition


About the Book

1. Basic definitions and essential concepts of small-angle scattering 1.1 Interaction of x-rays and neutrons with matter; scattering length 1.2 Scattering vector and scattering cross section 1.3 Scattering length density and contrast 1.4 Absorption and transmission of x-ray and neutron beams 1.5 Form and structure factors 1.6 Complementarity of neutron and x-ray scattering techniques 2. Radiation sources 2.1 Constant flux reactors 2.2 Spallation neutron sources 2.3 Photon sources 3. Constant flux and time-of-flight instrumentation 3.1 General Purpose SANS instrument at HFIR, ORNL 3.2 Extended Q SANS instrument at SNS, ORNL 3.3 Perfect crystal USANS instrument at NIST 3.4 Time-of-flight USANS at SNS 3.5 SAXS and USAXS instruments at APS, ANL 4. Sample environment 4.1 Sample cells for ambient conditions 4.2 SANS high-pressure cells 4.3 SAXS high-pressure cells 5. Practical aspects of planning and conducting SAS experiments 5.1 Applying for beam time 5.2 Choice of the instrument configuration 5.3 Detector sensitivity and instrument backgrounds 5.4 Optimal sample thickness, transmission and multiple scattering 5.5 Subtraction of the sample background 5.6 Data acquisition time, masking and radial averaging 5.7 Absolute calibration 5.8 Instrument resolution 5.9 Effective thickness of powder samples 5.10 Contrast variation with liquids and gases 5.11 Average scattering length density of multicomponent samples 6. Fundamentals of data analysis 6.1 Correlation functions: mathematical form and geometrical meaning 6.2 Scattering from two-phase random systems: the Porod invariant 6.3 Asymptotic behavior: the Porod law 6.4 Radius of gyration 6.5 Asymptotic behavior: the Guinier approximation 6.6 Structural parameters of the two-phase porous medium 6.7 Bridging the asymptotic behavior: the unified scattering function 6.8 Scattering from fractal systems and the polydisperse spherical model 6.8.1 Scattering from mass, surface, and pore fractals 6.8.2 Polydisperse spherical model 6.9 Beyond the two-phase model 6.9.1 Partial scattering functions of multiphase systems 6.9.2 Scattering contrast and the invariant of a three-phase system 6.9.3 Oscillatory deviations from the Porod law 6.10 Interrelation between the reciprocal and real space 7. Structural characterization of porous materials using SAS 7.1 Porous media for energy, environmental, and biomedical applications 7.2 Porous silica 7.2.1 Porous Vycor glass 7.2.2 Silica aerogels 7.2.3 Porous fractal silica 7.2.4 Ordered mesoporous silica 7.3 Porous carbons 7.3.1 Activated carbons 7.3.2 Glassy carbon 7.3.3 Carbon aerogel 7.4 Alumina membranes 7.5 Porous polymer monoliths 7.6 Ceramics, alloys, and composite materials 7.7 Structure of sedimentary rocks 8. Neutron and x-ray porosimetry 8.1 Principles of the scattering-based porosimetry 8.2 Structure of nanoporous low-dielectric-constant films 8.3 Vapor adsorption in porous silica 8.3.1 Contrast matching SANS 8.3.2 Synchrotron SAXS 8.4 Carbonaceous materials 8.5 Kinetics of sorption and desorption 8.5.1 Dynamic micromapping of CO2 sorption in coal 8.5.2 Vapor adsorption in MCM-41 8.5.3 Vapor and water uptake in Nafion membranes 9. Individual liquids and liquid solutions under confinement 9.1 Confined electrolytes 9.1.1 Ion adsorption in electrolyte saturated porous carbons 9.1.2 Ionic liquids under confinement 9.2 Detection of the oil generation in hydrocarbon source rocks 9.3 Cavitation on hydrophobic nanostructured surfaces 9.4 Liquid-liquid demixing in mesopores 9.5 Supercooled water in confined geometries 9.6 Order-disorder transitions in liquid crystals 10. Supercritical fluids in confined geometries 10.1 Specifics of the supercritical fluid adsorption 10.2 Density fluctuations near the liquid-gas critical point of confined fluids 10.3 Adsorption of supercritical CO2 in porous silica 10.3.1 Silica aerogels 10.3.2 Porous fractal silica 10.4 Methane in porous carbons 10.5 Hydrogen storage in activated carbons 10.6 CO2 sequestration in coal 10.7
About the Author:

Yuri B. Melnichenko was educated as a physicist in the USSR, receiving his Ph.D. from Kiev State University (1984) and later a prestigious Doctor of Physics and Mathematics degree from the Academy of Sciences of USSR (1992). He is a Humboldt Foundation Fellow (1993, Germany), and a recipient of Max Planck Society award (1994, Germany). Visiting researcher, the Max Planck Institut für Polymerforschung, (Mainz, Germany) in 1993 - 1995. Since 1995 - a research staff member, Oak Ridge National Laboratory. He conducts research in the field of soft matter materials and confined fluids using small-angle and quasi-elastic neutron scattering techniques and is an author and co-author of more than 160 peer reviewed scientific articles. Co-Editor of a book "Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems" (Kluwer Academic/Plenum Publishers, New York, 2001). In 2005 elected a Fellow of American Physical Society for "Significant contribution to the fundamental science underlying universal aspects of macromolecules in polymer solutions, supercritical mixtures and polymer blends". Most recent interests are in the area of high pressure adsorption and dynamics of fluids confined in pores of engineered and natural porous materials.


Best Sellers



Product Details
  • ISBN-13: 9783319346465
  • Publisher: Springer
  • Binding: Paperback
  • Height: 234 mm
  • No of Pages: 314
  • Spine Width: 18 mm
  • Weight: 521 gr
  • ISBN-10: 3319346466
  • Publisher Date: 23 Aug 2016
  • Edition: Softcover reprint of the original 1st ed. 2016
  • Language: English
  • Returnable: Y
  • Sub Title: Applications to Energy Storage and Environmental Science
  • Width: 156 mm


Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Small-Angle Scattering from Confined and Interfacial Fluids
Springer -
Small-Angle Scattering from Confined and Interfacial Fluids
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Small-Angle Scattering from Confined and Interfacial Fluids

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!