This title includes a number of Open Access chapters.
The twenty-first century world faces several enormous challenges: how to mitigate climate change, meet a growing energy demand without relying on fossil fuels, and manage the escalating quantities of solid waste generated by cities around the world. This compendium volume offers a viable solution to all three: using solid waste as a renewable resource.
Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, this volume has gathered together research into a range of technologies and methodologies. The editors, two well-published researchers at the top of their field, have selected articles that lay the foundation for this discussion. They have then included chapters for the following waste management scenarios: anaerobic digestion, composting, pyrolysis and chemical upgrading, incineration and carbonization, and gasification.
Research has been included from around the world, representing potential international solutions to what are global challenges, as well as crucial implications for ongoing research in this important field of study.
About the Author: Jimmy Faria is senior scientist at Abengoa Research, a R&D division of Abengoa. He is a chemical engineer and obtained a PhD from the University of Oklahoma (USA) in 2012. His research at the School of Chemical, Biological and Material Science at the University of Oklahoma (USA) is focused on the catalytic conversion of biomass-derived compounds in a novel nanoparticle stabilized emulsion system developed in this group, as well as on the synthesis, characterization, and applications of amphiphilic nanohybrids (e.g., enhanced oil recovery).
Maria Pilar Ruiz-Ramiro is senior scientist at Abengoa Research, a R&D division of Abengoa. She is a chemical engineer and obtained a PhD from the University of Zaragoza (Spain) in 2008. She later worked as research associate with Daniel E. Resasco at the School of Chemical, Biological and Material Science at the University of Oklahoma (USA). Her research is focused on the thermochemical conversion of biomass, synthesis, and characterization of carbon solids (carbon nanotubes, biomass char, and soot), and the development of nanostructured catalysts for biofuels up-grading reactions.