Statistics for Health Data Science at Bookstore UAE
Statistics for Health Data Science

Statistics for Health Data Science


     0     
5
4
3
2
1



Available


About the Book

Chapter 1: Introduction: Data science, statistics, and big data in healthExamples of the "new" health services, delivery and outcomes data including surveys, claims and EMR's. Examples of the big questions that can be addressed. Data Science versus statistics, big databases versus big data, prediction versus inference. Characteristics of health care utilization data. What does health care cost? Different ways of quantifying health care costs. Characteristics of health cost data.
Chapter 2: The new health care data: surveys, medical claims and EMR'sSurveys, Medical Claims, EMR's: characteristics and challenges. Examples of studies based on the different types of data resources. Strengths and weaknesses of each. Tips for quality control. Possibly: An overview of issues in processing unstructured data and linking databases
Chapter 3: Basic statistical background useful for analysis of health care costs and utilizationThe generic inference problem. Some useful statistical distributions. Conditional and marginal probability. Least squares and maximum likelihood. Hypothesis testing and discussion about p-values. Statistical power.
Chapter 4: Conceptual models for health care utilization and costs Anderson-Newman model, variants and extensions.
Chapter 5: Linear regression for observational studiesConfounding, Mediation and Moderation. Difference in difference models. Impact of violating OLS assumptions
Chapter 6: Nonlinear models 1: Binary outcomes and choice models Probit models. Logistic models and conditional logistic models. Multinomial logit regression models and ordered logit models. The method of recycled predictions.
Chapter 7: Nonlinear models 2: Models for count outcomes Log-linear models for count outcomes. Poisson and negative binomial regression. Models for individual and population counts. Zero-inflated and zero-truncated models. Generalized Linear Models.
Chapter 8: Risk adjustmentConstructing comorbidity and risk adjustment variables using claims data. Computing Q/E ratios. Using O/E ratios for profiling facilities.
Chapter 9: Models for skewed health costsLog-normal models for skewed costs. Duan's method of smearing for lognormal data. The difference between modeling the log of Y (lognormal models for costs) and log(E(Y)) log-linear models for count outcomes. Gamma models as an alternative to lognormal models for cost data. Cross-validation for model selection.
Chapter 10: Two-part models for costs and countsZero-inflated Poisson and negative binomial models. Two part models (logit-normal or logit-gamma) for cost outcomes. Cross-validation for model selection.
Chapter 11: The bootstrap: General principles and use in variance estimation for two-part modelsDoes the normality assumption matter? Using the bootstrap to examine the properties of regression coefficient estimates in large sample. Different types of bootstrap confidence intervals. Extending the bootstrap to compute the variance of the marginal effects in the two-part model.
Chapter 12: Survey data analysisExamples of Health Surveys. Complexity of Health Surveys. Simple Random Sampling. Stratified Sampling. Post-Stratification. Other methods for dealing with missing data. Cluster Sampling. Sample Weights: when to use or not to use? Ratio estimation, linearization and variance estimation
Chapter 13: Machine learning methods for predictionPredictive analytics versus statistical inference. Simple classification and discrimination algorithm
About the Author:

Ruth Etzioni, PhD has been on the faculty at the Fred Hutchinson Cancer Research Center since 1991 and is an affiliate professor of biostatistics and health services at the University of Washington. She develops statistical models and methods for health policy and is a member of national cancer policy panels including the American Cancer Society and the National Comprehensive Cancer Network. She has developed and taught a new curriculum in statistical methods for graduate students in the School of Public Health at the University of Washington; the course focuses on health care analytics using contemporary, publicly available data resources. The popularity of this course led her to conceive of and develop the proposed text. Dr. Etzioni received her undergraduate degree in Computer Science and Operations Research from the University of Cape Town and her PhD in Statistics from Carnegie-Mellon University.

Micha Mandel, PhD, is professor of statistics at the Hebrew University of Jerusalem. Micha has vast experience teaching at all levels from undergraduate to PhD students, and has been engaged with a wide range of problems in medicine and health care. His interaction with students and researchers from different fields led him to develop tools to explain sophisticated statistical concepts and methods in ways that are accessible to many audiences. His main areas of research include biased sampling, survival analysis, and forensic statistics, but he continues to expand his reach, most recently to the estimation of COVID-19 natural history. He has published in many high-profile statistical journals including Biometrics, Biometrika, Journal of the American Statistical Association, and Statistics in Medicine. Micha received his PhD in Statistics from the Hebrew University of Jerusalem.

Roman Gulati, MS, has been a senior statistical analyst at the Fred Hutchinson Cancer Research Center since 2005. Mr. Gulati is a designer, developer, and analyst of statistical models to investigate population impacts of national clinical practice patterns and cancer control policies. He has led or contributed to many independent and collaborative modeling studies for the Cancer Intervention and Surveillance Modeling Network of the National Cancer Institute. He is also chief biostatistician for the prostate cancer research program at the Fred Hutch and the University of Washington, supporting many molecular, preclinical, and clinical research studies. Mr. Gulati received graduate training first in mathematics and then in Chinese before earning his MS in Statistics from Oregon State University.


Best Sellers



Product Details
  • ISBN-13: 9783030598884
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 222
  • Series Title: Springer Texts in Statistics
  • Sub Title: An Organic Approach
  • Width: 156 mm
  • ISBN-10: 3030598888
  • Publisher Date: 08 Feb 2021
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 16 mm
  • Weight: 571 gr


Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Statistics for Health Data Science
Springer International Publishing -
Statistics for Health Data Science
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Statistics for Health Data Science

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!