On Stochastic Differential Equations at Bookstore UAE
Home > Science & Mathematics > Mathematics > Philosophy of mathematics > On Stochastic Differential Equations
On Stochastic Differential Equations

On Stochastic Differential Equations


     0     
5
4
3
2
1



International Edition


About the Book

MEMOIRS O F T H i-AMERICAN MATHEMATICAL SOCIETY NLMBKR 4 ON STOCHASTIC DlFFliRL. NT. lAL LUAUONS KFYOSl 1TO PUBLISHED BY THh AMERICAN MATHEMATFCAL SCXJF1T 531 West 116th St., New York City ON STOCHASTIC DIFFERENTIAL EQUATIONS By KIYOSI ITO Let Xj. be a simple Markoff process with a continuous parameter t, and F t, s, E be the transition probability law of the process D F t, -s, E - Prfx E X.-3, where the right side means the probability of x a E under the condition x. f Hie differential of x. at t s is given by the transition probability law of x in an infinitesimal neighborhood of t s 2 FCs-A jjs E. W. Feller has discussed the case in which it has the following form 3 F s-A 2, JJS A E 1-p s, I yA 2 G s-A 2, j js A E yA 2 p s, j P s, 3, E o yA 2, where G s-Ag, 5 s A, j, E is a probability distribution as a function of E and satisfies 5 T- T f 1 2 J -j h-jl f 6 2 J, l-J G s-A 2, J js dn - b t, J, for A A and p s, J and P s, J, E is a probability distribution in E. The special case of M p s, J O 11 has already been treated by A, Kolmogoroff and S. Bernstein. 3 We shall introduce a somewhat general definition of the differential of the process x. Cf. 85. Let P A denote the conditional probability law L 8,5, 2 Mx-V E-3, A V A 2 0. If the 1 A -times convolution of P fl A tends to a probability law L with regard to Levys law-distance as A A 0, then L is called the I d S, J stochastic differential coefficient at s. L is clearly an infinitely divisible law. In the above Fellers case the logarithmic characteristic function Received by the editors March 29, 5 KIYOSI I TO V, L S of L f is given by 7 z, L ib s, j z - a s, j z p s, 5 f 03 e iu2 - 1 P s, J, du J . 6 8 j 7 - 00 A problem of stochastic differential equations is to construct a Markoff process whose stochastic differential coefficient L. - is given as a function of t, . 9 W. Feller has deduced the following integro-differential equation from 3, 4, 5 and 6 F t, J s, E - P t, j F t, J s, E p t, f F t, 7 s, E P t, J, dT 0. He has proved the J-oo existence and uniqueness of the solution of this equation under some conditions and has shown that the solution becomes a transition probability law, and satisfies 3, 4, 5 6. He has termed the case p t, j as continuous case and the case a t, J and b t, J as purely discontinuous case. It is true that we can construct a simple Markoff process from the transition probability law by introducing a probability distribution into the functional space RR by Kolmogoroff f s theorem, 7 but it is impossible to discuss the regularity of the ob tained process, for example measurability, continuity, discontinuity of the first kind etc, as was pointed out by J. L, Doob. 8 To discuss the measurability of the process for example, J, L. Doob has introduced a probability distribution on a subspace of RR and E, Slutsky has introduced a new concept tf measurable kernel 1,9 We shall in vestigate the sense of the term lf continuous case 11 and fl purely discontinuous case 11 used by W, Feller from the rigorous view-point of J. L. Doob and E. Slutsky. A recent research of J, L, Doob O concerning a simple Markoff process taking values in an en umerable set has been achieved from this view-point, A research of R. FortetH con cerning the above continuous case seems also to stand on the same idea but the author is not yet informed of the details . In his paper ON STOCHASTIC PROCESSES I 11 12 the author has deduced Levys canonical form of differential processes with no fixed discontinuities by making use of the rigorous scheme of J. L, Doob, Using the results of the above paper, we shall here construct the solution of the above stochastic differential equation in such a way that we may be able to discuss the regularity of the solution. For this purpose we transform the stochastic differential equation into a stochastic integral . equation...


Best Sellers



Product Details
  • ISBN-13: 9781406742176
  • Publisher: Maurice Press
  • Publisher Imprint: Maurice Press
  • Height: 216 mm
  • No of Pages: 56
  • Series Title: English
  • Weight: 136 gr
  • ISBN-10: 1406742171
  • Publisher Date: 15 Mar 2007
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 3 mm
  • Width: 140 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
On Stochastic Differential Equations
Maurice Press -
On Stochastic Differential Equations
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

On Stochastic Differential Equations

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!