Supervised and Unsupervised Learning for Data Science
Home > Technology & Engineering > Electronics & communications engineering > Communications engineering / telecommunications > Radar > Supervised and Unsupervised Learning for Data Science
Supervised and Unsupervised Learning for Data Science

Supervised and Unsupervised Learning for Data Science


     0     
5
4
3
2
1



International Edition


About the Book

Chapter1: A Systematic Review on Supervised & Unsupervised Machine Learning Algorithms for Data Science.- Chapter2: Overview of One-Pass and Discard-After-Learn Concepts for Classification and Clustering in Streaming Environment with Constraints.- Chapter3: Distributed Single-Source Shortest Path Algorithms with Two Dimensional Graph Layout.- Chapter4: Using Non-Negative Tensor Decomposition for Unsupervised Textual Influence Modeling.- Chapter5: Survival Support Vector Machines: A Simulation Study and Its Health-related Application.- Chapter6: Semantic Unsupervised Learning for Word Sense Disambiguation.- Chapter7: Enhanced Tweet Hybrid Recommender System using Unsupervised Topic Modeling and Matrix Factorization based Neural Network.- Chapter8: New Applications of a Supervised Computational Intelligence (CI) Approach: Case Study in Civil Engineering.
About the Author:

Professor Michael W. Berry is a Full Professor in the Departments of Electrical Engineering and Computer Science (EECS) and Mathematics at the University of Tennessee, Knoxville. He served as Interim Department Head of Computer Science from January 2004 to June 2007, and as Associate Head in the Department of Electrical Engineering and Computer Science from July 2007 to July 2012. He worked in the Communications Product Division of IBM in Raleigh, NC for about 1 year before accepting a research staff position in the Center for Supercomputing Research and Development at the University of Illinois at Urbana-Champaign. In 1990, he received a PhD in Computer Science from the University of Illinois at Urbana-Champaign. Prof. Berry is the co-author of "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods" (SIAM, 1994) and "Understanding Search Engines: Mathematical Modeling and Text Retrieval, Second Edition" (Bestseller, SIAM, 2005) and editor of "Computational Information Retrieval" (SIAM, 2001), "Survey of Text Mining: Clustering, Classification, and Retrieval" (Springer-Verlag, 2003, 2007), "Lecture Notes in Data Mining" (Bestseller, World Scientific, 2006), "Text Mining: Applications and Theory" (Wiley, 2010), and "High-Performance Scientific Computing" (Springer, 2012). He has published well over 150 peer-refereed journal and conference publications and book chapters. He has organized numerous workshops on Text Mining and was Conference Co-Chair of the 2003 SIAM Third International Conference on Data Mining (May 1-3) in San Francisco, CA. He was Program Co-Chair of the 2004 SIAM Fourth International Conference on Data Mining (April 22-24) in Orlando, FL., and he was a keynote speaker at the 2015 International Conference on Soft Computing in Data Science (SCDS2015). He was also honorary chair of the 2016 International Conference on Soft Computing in Data Science (SCDS2016) in Kuala Lumpur, Malaysia. His research interests include information retrieval, data and text mining, computational science, bioinformatics, and parallel computing. Prof. Berry's research has been supported by grants and contracts from organizations such as the National Science Foundation, National Institutes of Health, the U.S. Department of Energy, the the National Aeronautics and Space Administration, and the Intel Corporation.

Professor Dr Azlinah Mohamed is a Professor at the Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Malaysia. She currently serves as the Dean of the faculty; she was previously the Special Officer to the Vice Chancellor and Head of the Academic Affairs and Development Unit of Universiti Teknologi MARA. She received her MSc (Artificial Intelligence) from University of Bristol, UK and PhD (Decision Support Systems) from Universiti Kebangsaan Malaysia. Her recent research activities and numerous professional publications in international conferences and local journals focus on her interests in the Artificial Intelligence, Decision Support Systems and Soft Computing. She has published well over 180 peer-refereed journal and conference publications and book chapters. She was the Honorary Chair of the 2015, 2016 and 2017 International Conference on Soft Computing in Data Science, and she was a keynote speaker at the 2016 International Conference on Soft Computing in Data Science (SCDS2016). She was also awarded with many competitive grants from ScienceFund, MOSTI and others on both academic and industrial projects for the industry, as well as for the government. Her research works includes the Information Professionals' Competency Assessment Model and the Multi-Parametric Pectin Lyase-Like Protein Function Classifier which had won many awards. She is also an active member of the Malaysia Information Technology Society (MITS), Lembaga Akredetasi Negara, Malaysia and Artificial Intelligence Society.

Professor Bee Wah Yap is a Professor at the Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Malaysia. She is the Head of Advanced Analytics Engineering Centre (AAEC), a Centre of Excellence in FSKM. She received her Bachelor of Science (Education)(Hons) degree, majoring in Mathematics from University of Science Malaysia, Master of Statistics from University of California Riverside and PhD (Statistics) from University of Malaya. Her research interests are in data mining, computational statistics and multivariate data analysis. She actively organizes SCDS2015, SCDS2016 and SCDS2017 conference which focus on Soft Computing in Data Science. She also actively conduct statistical workshops (IBM SPSS STATISTICS, IBM SPSS AMOS, PLS-SEM, SAS EMINER). She has published papers in ISI journals such as Expert Systems with Applications, Journal of Statistical Computation and Simulation, Communication in Statistics-Simulation and Computation, and also in Scopus indexed journals. She is also an active reviewer for international journals such as International Journal of Bank Marketing and Communication in Statistics-Simulation and Computation and Neurocomputing.


Best Sellers



Product Details
  • ISBN-13: 9783030224776
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 187
  • Series Title: Unsupervised and Semi-Supervised Learning
  • Weight: 331 gr
  • ISBN-10: 3030224775
  • Publisher Date: 19 Sep 2020
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 11 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Supervised and Unsupervised Learning for Data Science
Springer International Publishing -
Supervised and Unsupervised Learning for Data Science
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Supervised and Unsupervised Learning for Data Science

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!