Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:
- Discusses the developed theory for UWB antennas in frequency and time domains
- Delivers a brief exposition of numerical methods for electromagnetics oriented to antennas
- Describes solid-planar equivalence, which allows flat structures to be implemented instead of volumetric antennas
- Examines the impedance matching, phase linearity, and radiation patterns as design objectives for omnidirectional and directional antennas
- Addresses the time domain signal analysis for UWB antennas, from which the distortion phenomenon can be modeled
- Includes illustrative examples, design equations, CST MICROWAVE STUDIO(R) simulations, and MATLAB(R) plot generations
- Compares the performance of different UWB antennas, supplying useful insight into particular tendencies and unresolved problems
Ultra Wideband Antennas: Design, Methodologies, and Performance provides a valuable reference for the scientific community, as UWB antennas have a variety of applications in body area networks, radar, imaging, spectrum monitoring, electronic warfare, wireless sensor networks, and more.
About the Author: Giselle M. Galvan-Tejada received her B.Sc in communications and electronics engineering from the National Polytechnic Institute (IPN), Mexico City, Mexico; her M.Sc in electrical engineering from the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN); and her Ph.D in electronics and telecommunications engineering from the University of Bradford, UK. Currently, she is working in the Communications Section of the Department of Electrical Engineering of the CINVESTAV-IPN as a lecturer and full-time researcher. She is a member of the IEEE and the National Council of Researchers of Mexico. Her research interests include radiocommunication systems, wireless sensor networks, radio propagation, antenna array technology, ultra wideband antennas, WiMAX, space division multiple access, and techniques to make efficient use of the spectrum.
Marco Antonio Peyrot-Solis received his B.Sc in naval sciences engineering from the Mexican Naval Academy, Antón Lizardo, Veracruz; his M.Sc in electrical engineering from the United States Naval Postgraduate School, Monterey, California; and his Ph.D in electrical engineering from the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico. Currently, he is working for the Mexican Navy Research Institute (INIDETAM), Veracruz, Mexico, and his research interests include ultra wideband antennas and electromagnetic compatibility.
Hildeberto Jardon-Aguilar received his B.Sc in electrical engineering from the School of Mechanical and Electrical Engineering of the National Polytechnic Institute (ESIME-IPN), Mexico City, Mexico, and his Ph.D in radio systems from the Moscow Technical University of Communications and Informatics, Russia. He is currently a full professor at the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico. His research interests include analysis of nonlinearities in radio-frequency and microwave circuits, electromagnetic compatibility, antennas, and photonic systems. He is the author of five books and more than 100 technical papers published in journals and symposiums.