Ultra-Low Voltage Circuit Techniques for Energy Harvesting
Home > Technology & Engineering > Electronics & communications engineering > Electronics engineering > Circuits & components > Ultra-Low Voltage Circuit Techniques for Energy Harvesting
Ultra-Low Voltage Circuit Techniques for Energy Harvesting

Ultra-Low Voltage Circuit Techniques for Energy Harvesting


     0     
5
4
3
2
1



International Edition


About the Book

This book provides design-oriented models for the implementation of ultra-low-voltage energy harvesting converters, covering the modeling of building blocks such oscillators, rectifiers, charge pumps and inductor-based converters that can operate with very low supply voltages, typically under 100 mV. Analyses based on the diode and MOSFET models are included in the text to allow the operation of energy harvesters from voltages of the order of 100 mV or much less, with satisfactory power efficiency. The practical realization of different converters is also addressed, clarifying the design trade-offs of ultra-low voltage (ULV) circuits operating from few millivolts.

  • Offers readers a state-of-the-art revision for ultra-low voltage (ULV) energy harvesting converters;
  • Provides analog IC designers with proper models for the implementation of circuits and building blocks of energy harvesters, such as oscillators, rectifiers, and inductor-based converters, operating under ultra-low voltages;
  • Addresses the design of energy harvesters operating from ultra-low voltages, enabling autonomous operation of connected devices driven by human energy;
  • Demonstrates design and implementation of integrated ULV up-converters;
  • Includes semiconductor modeling for ULV operation.

About the Author:

Rafael L. Radin received the M.Sc. and Ph.D. degrees in Electrical Engineering from the Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil, in 2008 and 2021 respectively. In 2016, he was a visiting Ph.D. student at the Polystim Laboratory, Polytechnique Montreal, Canada. His current research is focused on the design of ultra-low voltage energy harvesting converters and power management for IoT and wearable applications.

Marcio Bender Machado received the M.Sc. and Ph.D. degrees in Electrical Engineering from the Federal University of Santa Catarina, Brazil in 2006 and 2014, respectively. From 2006 to 2017 he was with the Instituto Federal Sul-Rio-Grandense, and since 2017 he is professor in the Federal Institute of Sao Paulo, Brazil. In 2013, he was a visiting Ph.D. student at the Polystim Laboratory at École Polytechnique d Montréal, Canada. He was awarded the 2015 best Brazilian Ph.D. Thesis in Microelectronics. His current research is focused on the design of ultra-low-voltage electronics and energy harvesting circuits.

Mohamad Sawan received the Ph.D. degree in 1990 in Electrical Engineering, from Sherbrooke University, Canada. He is a Chair Professor Founder and Director of the Center of Excellence for Biomedical Research And INnovation (CenBRAIN) in Westlake University, Hangzhou, China. He is Emeritus Professor of Microelectronics and Biomedical Engineering and he is founder and director of the Polystim Neurotech Laboratory in Polytechnique Montréal. He was leading the Microsystems Strategic Alliance of Quebec (1991-2019). Dr. Sawan is Vice-President Publications (2019-Present) of the IEEE CAS Society. Dr. Sawan received several awards, among them the Queen Elizabeth II Golden Jubilee Medal, the Shanghai International Collaboration Award, the Chinese Qianjiang Friendship Ambassador Award, and The Chinese Zhejiang Westlake Friendship Award. He is Fellow of the IEEE, Fellow of the Canadian Academy of Engineering, Fellow of the Engineering Institute of Canada, and Officer of the Quebec's National Order.

Carlos Galup-Montoro studied engineering sciences at the University of the Republic, Montevideo, Uruguay, and electronic engineering at the National Polytechnic School of Grenoble (INPG), France. He received the Engineering degree in electronics and a Ph.D. degree from INPG, in 1979 and 1982, respectively. From 1982 to 1989, he worked at the University of São Paulo, Brazil. Since 1990, he has been with the Electrical Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil, where he is currently a Professor. In the second semester of the academic year 1997-1998, he was a Research Associate with the Analog Mixed Signal Group, Texas A&M University. He was a Visiting Scholar at UC Berkeley, from 2008 to 2009, and at IMEP/INPG in the first trimester of 2017.

Márcio C. Schneider received B. E. and M. S. degrees in electrical engineering from the Federal University of Santa Catarina (UFSC) in 1975 and 1980, respectively, and a doctoral degree in electrical engineering from University of São Paulo, São Paulo, Brazil, in 1984. In 1976, he joined the Electrical Engineering Department of UFSC, where he is now a professor. In 1995, he spent a one-year sabbatical at the Electronics Laboratory of the Swiss Federal Institute of technology, Lausanne. In 1997 and 2001, he was a Visiting Associate Professor at Texas A&M University.


Best Sellers



Product Details
  • ISBN-13: 9783031044915
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 149
  • Spine Width: 14 mm
  • Width: 158 mm
  • ISBN-10: 3031044916
  • Publisher Date: 22 Jul 2022
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 480 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Ultra-Low Voltage Circuit Techniques for Energy Harvesting
Springer International Publishing -
Ultra-Low Voltage Circuit Techniques for Energy Harvesting
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Ultra-Low Voltage Circuit Techniques for Energy Harvesting

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!