Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization

Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization


     0     
5
4
3
2
1



International Edition


About the Book

Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization.

FEATURES

  • Demonstrates how unsupervised learning approaches can be used for dimensionality reduction
  • Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts
  • Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use
  • Provides use cases, illustrative examples, and visualizations of each algorithm
  • Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis

This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.


About the Author:

Dr. B. K. Tripathy, a distinguished researcher in Mathematics and Computer Science has more than 600 publications to his credit in international journals, conference proceedings, chapters in edited research volumes, edited volumes, monographs and books. He has supervised over 50 research degrees to his credit. He has a distinguished professional career of over 40 years of service in different positions and at present he is working as a professor (Higher Academic Grade) and Dean of school of Information technology in VIT, Vellore. As a student, Dr. Tripathy has won three gold medals, national scholarship for post graduate studies, UGC fellowship to pursue PhD, DST sponsorship to pursue M. Tech in computer science at Pune University and DOE visiting fellowship to IIT, Kharagpur. He was nominated as distinguished alumni of Berhampur University on its silver jubilee and golden jubilee years. For efficient service as a reviewer for Mathematical Reviews, he was selected as an honorary member of American Mathematical Society. Besides this he is a life member/senior member/member of over 20 international professional societies including IEEE, ACM, IRSS, CSI, Indian Science congress, IMS, IET, ACM Compute News group and IEANG. Dr. Tripathy is an editor/editorial board member/ reviewer of over 100 international journals like Information Sciences, IEEE transactions on Fuzzy Systems, Knowledge Based Systems, Applied Soft Computing, IEEE Access, Analysis of Neural Networks, Int. Jour. of Information Technology and Decision Making, Proceedings of the Royal Society-A and Kybernetes. He has so far adjudicated PhD theses of more than 20 universities all over India. He has organised many international conferences, workshops, FDPs, guest lectures, industrial visits, webinars over the years. Dr. Tripathy has to his credits delivered keynote speeches in international conferences, organised special sessions and chaired sessions. Also, many of his papers have been selected as best papers at international conferences. He has received funded projects from UGC, DST and DRDO and published some patents also.

His current topics of research interest include Soft Computing, Granular computing, Fuzzy Sets and Systems, Rough Sets and knowledge engineering, Data Clustering, Social Network Analysis, Neighbourhood Systems, Soft Sets, Social Internet of Things, Big Data Analytics, Multiset theory, Decision Support Systems, Deep Neural Networks, Pattern Recognition and Dimensionality Reduction.

Anveshrithaa S

Anveshrithaa Sundareswaran is a final year B. Tech (Computer Science) student at Vellore Institute of Technology, Vellore. Her areas of interest include machine learning, deep learning and data science. She has shown her research capabilities with several publications. Her research on Promoter Prediction in DNA Sequences of Escherichia coli using Machine Learning Algorithms won the best Student Paper award at the IEEE Madras section Student Paper Contest, 2019 and was published later in the International Journal of Scientific & Technology Research. She has presented a paper on Real-Time Vehicle Traffic Analysis using Long Short-Term Memory Networks in Apache Spark at the IEEE International Conference on Emerging Trends in Information Technology and Engineering, 2020. Her research on Real-Time Traffic Prediction using Ensemble Learning for Deep Neural Networks has been published in the International Journal of Intelligent Information Technologies (IJIIT). Also, she has communicated a research paper on Real-Time Weather Analytics using Long Short-Term Memory Networks to the International Journal of Cognitive Computing in Engineering. Her other achievements include the outstanding student award at the 2020 Tsinghua University Deep Learning Summer School where she was the only student to represent India. Achievers Award and Raman Research Award from VIT University are some of the other recognitions of her merit.

Shrusti Ghela

Shruthi Ghela has received her B. Tech (CS) degree from Vellore Institute of Technology, Vellore in May 2020. She completed her Capstone project at Iconflux Technologies Pvt. Ltd., Ahmedabad, India in the field of Machine Learning during. She has completed two summer projects: one in the domain of Data Science from KeenExpert Solution Pvt. Ltd., Ahmedabad, India and the other in Web Development from Jahannum.com, Ahmedabad, India. For her excellent academic performance, she received scholarship for all 4 years of under graduation from VIT. She was the winner of the DevJams'19 hackathon for two consecutive years in 2018 and 2019. She has proficiency in the languages German and Chinese besides English. In an attempt to increase and intensify her specialisations, she has completed IBM Data Science Professional Certificate (Coursera), Machine Learning A-Z (Udemy) and Machine Learning by Andrew Ng (Coursera). Ms. Ghela has the skill set of Hadoop, Python, MATLAB, R, Haskell, Object Oriented Programming, Full Stack development, Functional Programming and Statistics. Her research area of interest includes Data Science and Quantum Computing. Apart from being a hard-core subject learner, she enjoys Photography, playing Tennis, reading and traveling.


Best Sellers



Product Details
  • ISBN-13: 9781032041018
  • Publisher: Taylor and Francis
  • Publisher Imprint: CRC Press
  • Height: 233 mm
  • No of Pages: 160
  • Spine Width: 0 mm
  • Weight: 440 gr
  • ISBN-10: 1032041013
  • Publisher Date: 30 Sep 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Sub Title: Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
  • Width: 156 mm


Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
Taylor and Francis -
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!