Vacuum technology has enormous impact on human life in many aspects and fields, such as metallurgy, material development and production, food and electronic industry, microelectronics, device fabrication, physics, materials science, space science, engineering, chemistry, technology of low temperature, pharmaceutical industry, and biology. All decorative coatings used in jewelries and various daily products--including shiny decorative papers, the surface finish of watches, and light fixtures--are made using vacuum technological processes. Vacuum analytical techniques and vacuum technologies are pillars of the technological processes, material synthesis, deposition, and material analyses--all of which are used in the development of novel materials, increasing the value of industrial products, controlling the technological processes, and ensuring the high product quality. Based on physical models and calculated examples, the book provides a deeper look inside the vacuum physics and technology.
About the Author: I. Bello is a Chair Professor at the dynamically developing Institute of Functional Nano and Soft Materials (FUNSOM), one of the top Chinese nanomaterial centers, and College of Nano Science and Technology (CNST), the Soochow University, China. Before his current position, he was Professor in Physics and Materials Science at the City University of Hong Kong. He is a founding core member of the Center of Super Diamond and Advanced Films (COSDAF) and the Advanced Coatings Applied Research Laboratory (ACARL) in Hong Kong. He was associated with the Surface Science Western, the University of Western Ontario in London (Canada) where he was an Adjunct Professor at the Department of Materials Engineering, an Adjunct Professor at Physics and Astronomy, and also an Industrial Consultant. Earlier in his career, he was Associate Professor at the Microelectronics Department, the Slovak University of Technology.
He earned his MSEE and PhD in microelectronics with a focus on vacuum technologies in microelectronics, particularly ion implantation and plasma processes, at the Slovak University of Technology (SUT) in Bratislava, Czechoslovakia/ Slovakia. He obtained the competitive Leverhulme Trust Fellowship in the field of the interaction of energetic ion beams with solids at the Electronic and Electrical Engineering, the University of Salford, England. As an Associate Professor at the SUT, he was a Vice Chairman of the Czechoslovak Expert Assembly for Vacuum Technology and Applications (Prague).
His earlier research was in ion implantation, thin film technology, and related vacuum processes, as well as diagnostic techniques applied to semiconductors. He obtained experience in building vacuum technological and analytical systems, including monochromatic x-ray photoelectron spectroscopy, mass separated ion implanters, UHV mass separated low energy ion beam facilities for hypothermal ion beams, and different vacuum deposition systems. Over the years, he has maintained a research group in materials science focusing on wide bandgap semiconductors, diamond, diamond-like carbons, cubic boron nitride, nanomaterials, photovoltaic cells, sensors, and organic electroluminescence devises. He has been teaching undergraduate and graduate courses at different universities. He lectured 19 diverse courses in physics and materials science, mostly advanced materials analyses, thin film deposition, vacuum technology, nondestructive testing, plasma processes, and physics for materials scientists. He published and presented approximately 380 articles that include 260 SCI journal articles with non-self-citation of approximately 32 per an article, a dozen patents (10 US), and couple of university textbooks.