Vibration Problems in Machines: Diagnosis and Resolution explains how to infer information about the internal operations of rotating machines from external measurements. In doing so, the book examines the vibration signals arising under various fault conditions, such as rotor imbalance, misalignment, cracked rotors, gear wear, whirling instabilities, and other problems.
Covering a wide range of techniques required in the monitoring, analysis, and diagnosis of operational rotating machinery, this text:
- Discusses topics ranging from the presentation of complex data to methods for reconciling model and plant data
- Describes the physical basis of fault signals as well as the necessary signal and data processing techniques
- Delivers fresh insight into misalignment phenomena and the future of smart machinery
Vibration Problems in Machines: Diagnosis and Resolution includes case studies with real plant data, MATLAB(R) scripts and functions for the modelling and analysis of rotating machines, end-of-chapter questions, and a solutions manual with qualifying course adoption. The book provides an invaluable resource for those seeking to optimize the use of complex and often apparently contradictory data.
About the Author: Arthur W. Lees, BSc, PhD, DSc, CEng, CPhys, FIMechE, FInstP, LRPS, joined the Central Electricity Generating Board, London, UK, after completing his PhD. Following a sequence of positions, he was appointed head of the Turbine Group for Nuclear Electric Plc, UK. In 1995, he moved to Swansea University, UK, where he is currently professor emeritus. An active researcher, Professor Lees is a regular reviewer of many technical journals, a fellow of the Institution of Mechanical Engineers and the Institute of Physics, and a chartered engineer and physicist. He has served on the editorial boards of the Journal of Sound and Vibration and Communications in Numerical Methods in Engineering, and was a member of the Council of the Institute of Physics, 2001-2005.